Precision Measurements of Scattering Phase Shifts in a Fountain Clock

- How can we measure differential cross-sections – s-wave or p-wave?
- Juggling fountain
- Connection between scattering and frequency shifts.
- Measuring quantum scattering phase shifts with clock-like accuracy – time variation of me/mp?
- Frequency shifts from background gas collisions

Penn State

Russ Hart
Xinye Xu
Steve Gensemer
Ross Martin
Ron Legere
Ruoxin Li
Kurt Gibble

Theory

Servaas Kokkelmans
Boudewyn Verhaar
Eindhoven Technological University

Eite Tiesinga, NIST

Support from NSF, NASA, ONR, & Penn State.

Probing s-wave Scattering

1. Select atoms with narrow distribution of v_z.

2. Elastic collisions change v_z.

4. Scan probe over velocity distribution.

5. Detect with F=4-5’ fluorescence

Probing s-wave Scattering

1. Select atoms with narrow distribution of v_z.

2. Elastic collisions change v_z.

4. Scan probe over velocity distribution.

5. Detect with F=4-5’ fluorescence

KG, Chang, Legere PRL ’95
Direct observation of s-wave scattering

- $T=0.9\mu K$ for collisions.
- 7% of atoms collide
- Early clearing gives no collisions
- Late-Early = collisions

Direct observation of s-wave scattering

- Single parameter fit to data set gives $\sigma = 0.4 \times 10^6 \text{ Å}^2$
- 99.9(1)% s-wave at 0.9 μK
- (incoherent s&p give 97(3)% s wave)
- $d\sigma/d\Omega$ is highly sensitive to interference terms.
Measuring $d\sigma/d\Omega$

Detect scattering angle θ by measuring scattered velocity distribution.

Initial velocity distribution

Use Doppler shift on Raman transition to measure $n(v_z)$.

$\nu_z = \frac{1}{2} \nu_r \cos \theta$

$P(\theta) \rightarrow P(v_z): \frac{dv_z}{d\nu} = \frac{1}{2} \nu_r d(\cos \theta) \propto d\Omega$

So

$P(v_z) \propto P(x = \cos(\theta))$

$= \left| \sum (2\ell + 1)e^{i\delta_i} \sin \delta_i P_i(\cos(\theta)) \right|^2$

$\frac{d\sigma}{d\Omega} = 1$

$\frac{d\sigma}{d\Omega} = v_z^2$

Juggling Atomic Fountain

1. Multiply load UHV MOT
2. Hold first cloud Trap and launch 2nd cloud from vapor cell MOT
3. launch first cloud, $T=1.5 \mu K$, hide in $F=3$
4. Trap 2nd cloud for 2 ms & launch
5. Optically pump both clouds to $|4,4\rangle$
6. Early/Late clearing of $|4,4\rangle$ atoms.

Velocity select 2nd cloud to $|3,3\rangle$

$\Delta v_z = \frac{2\Delta \nu}{\lambda} \sin(\theta)$

7. Scan velocity distribution-

8. Detect atoms.
Quantum Interference of s & p-waves

The figure shows the interference term dominates the number of atoms. The equation for the interference term is:

\[\sigma = \sigma_s + \sigma_p + \cdots \]

where \(\sigma_s \) and \(\sigma_p \) represent the s-wave and p-wave amplitudes, respectively. The phase difference \(\cos(\delta_s - \delta_p) \approx 1 \) leads to a launch delay of 9 ms.

The figure also includes a plot of the number of atoms over detuning (kHz) and the corresponding mV output. The s-wave and p-wave contributions are highlighted, with the s-wave showing a more significant effect.

KG, Chang, Legere, PRL '95

Quantum Interference of s & p-waves

The figure illustrates the difference in d\sigma/d\Omega for s-wave and p-wave. The s-wave contribution is constant, while the p-wave contribution varies with \(x^2 \). The plot shows the change in d\sigma/dv (10^-10 cm^2) over different time delays (\(\Delta t \)). The pure s-wave and opposite phase are indicated with arrows.

The insert shows the change in \(\sigma_s/\sigma_p \) for different time delays, with values indicating the relative strength of the s-wave to p-wave interference.
S-wave energy dependence and p-wave quantum threshold

- Pure triplet
- $1/E$ ‘resonance’ behavior - constant phase, expected for $a < 0$
- p-wave $\propto E_c^2$
- p-wave: $a_p = -107(6)a_0$ - Mixture of singlet and triplet & singlet interactions.

A clock with 100x smaller collision shift?

- Select 1% of the velocity distribution in 1D.
- 2 clock $\pi/2$ pulses
- Probe the atoms that didn’t collide!
- Collision shift is interference in the forward direction between the unscattered and scattered amplitudes.
- In this clock, what is the phase shift of the scattered atoms?
Scattering of Coherent Superpositions

- Cold clock atom is in a coherent superposition of states 1 & 2.
- Each state scatters coherently.
 \[|\Psi\rangle = \frac{1}{\sqrt{2}} \left[e^{ikz} + e^{ikr} f_1(\theta) \right] |1\rangle + \frac{1}{\sqrt{2}} \left[e^{ikz} + e^{ikr} f_2(\theta) \right] |2\rangle \]
- 2nd $\pi/2$ pulse with phase ϕ yields a Ramsey fringe.
 \[|\Psi\rangle = \frac{1}{\sqrt{2}} \left[e^{ikz} + e^{ikr} f_1(\theta) + e^{-i\phi} \left(e^{ikz} + e^{ikr} f_1(\theta) \right) \right] |2\rangle \]
- Probability current of state 2: unscattered, interference, scattered.
 \[j = \frac{\hbar}{\mu} \text{Im} \left(\langle \Psi | 2 \rangle \nabla \langle 2 | \Psi \rangle \right) = \frac{\hbar k}{\mu} \cos^2 \left(\frac{\phi}{2} \right) \cos(\theta) + j_{2,\text{int}}(\theta = 0) + j_{2,\text{sc}}(\theta) \]

For s-wave:

- Cold collision frequency shift
 \[j_{2,\text{int}} = \frac{\pi \hbar}{2 \mu k} \left(\sin(2\delta_{1,0}) - \sin(2\delta_{2,0}) \right) \sin(\phi) - 4 \left[\sin^2(\delta_{1,0}) + \sin^2(\delta_{2,0}) \right] \cos^2 \left(\frac{\phi}{2} \right) \]
- Scattered amplitude
 \[j_{2,\text{sc}} = \frac{\pi \hbar}{\mu k} \left[4 \sin(\delta_{1,0}) \sin(\delta_{2,0}) \cos \left(\frac{\phi - (\delta_{1,0} - \delta_{2,0})}{2} \right) \right] + \left[\sin(\delta_{1,0}) - \sin(\delta_{2,0}) \right]^2 \]

Precise Measurement of Scattering Phase Shifts

- Juggle atoms by tossing 2 laser-cooled clouds with short delay.
- Launch delays of 7 to 20 ms give ultra-cold scattering, 15 to 200\,\mu K.
- In a clock, a microwave cavity prepares atoms in a coherent superposition and enables a readout of the relative phase of those two clock states.
 \[\psi^+ = \frac{1}{\sqrt{2}} \left[\theta e^{ikz} |3\rangle + |4\rangle \right] + e^{i\delta_3} \frac{\sin \delta_3}{kr} |3\rangle + e^{i\delta_4} \sin \delta_4 e^{ikr} \frac{\sin \delta_4}{kr} |4\rangle \]
- Detect only scattered atoms.

\[n(v_z) \]

\[v_z \text{ (cm/s)} \]

\[10^3 \text{ arb.} \]

\[\text{Microwave Detuning (Hz)} \]

Hart, Xu, Legere, & KG, Nature '07
Precise Measurement of Scattering Phase Shifts

- In scattering measurements, effects are proportional to atomic density.
- Best density measurements are 10%.
- Key is that the relative phase of clock coherence of the scattered atoms is independent of density.
- Clock-like accuracy: ppm scattering lengths.

Hart, Xu, Legere, & KG, Nature '07

A Quantum Scattering Interferometer

- Mach-Zehnder

- Phase shift, not frequency shift
- 8 mrad statistical error
- Now, 6 mrad in 20 min.
Direct Observation of the Variation of Scattering Phase Shifts through Feshbach Resonances

- Vary magnetic field to tune molecular bound states through resonance.
- Phase shift goes through a resonance.
- Energy spread of 800 nK ($E_c=32\mu K$) broadens resonance.
- Sensitive to time variation of m_e/m_p at a Feshbach resonance.

![Graph showing phase shift variations](image)

Direct Observation of the Variation of Scattering Phase Shifts through Feshbach Resonances

- 4 different magnetic moments for each channel.
- Resolve multiple resonances.
- Isolate to 40,3m channel.

![Graph showing phase shift variations](image)
Feshbach Resonances & Time Variations

- Chin & Flambaum have shown sensitivity to time variation of m_ϕ/m_ρ of 10^9 for mG wide Feshbach resonances.
- 100 μrad precision can give scattering lengths to 1 ppm.
- Paris group has observed frequency shifts from several narrow, low-field Feshbach resonances.
- Scattering phase shifts vary by $\pm\pi/2$ at resonances.

Chin & Flambaum, PRL ’06
Kokkelmans, Ph.D. theis, ’00
Marion, Bize, …, Kokkelmans, & Salomon, arXiv:physics/0407064 ’06

Quadratic Zeeman Shifts

- Magnetic field gradients shift clock frequency as $2 \times 427 \frac{Hz}{G} B_0 dB$
- Shift of transition is 106 Hz or 80 rad @ 0.5 G.
- No Feshbachs for $|3-3\rangle$
- Use $|3-3\rangle$ to measure gradients – scattered clock atoms follow the same trajectories.
Scattering of Cold Atom Coherences by Hot Atoms: Background Gas Collision Shifts

- Current fountain clock uncertainties of \(10^{-16}\) come from shifts of room temperature clocks.
- Large cross section for small angle scattering
 - Negative frequency shift
- Hard-core, large angle scattering
 - Positive frequency shift
- They partially cancel each other.

Room-temperature collisions with cold atoms

- Atoms are not detected if \(\Delta v>3\text{cm/s}\).
 \[
 \lambda_{db} = \frac{\hbar}{m v} = 100\text{nm}
 \]
- If \(\Delta v<3\text{cm/s}\), you cannot localize the atom to \(\Delta b<100\text{nm}\).
- \(\Rightarrow\) Quantum/Diffractive Scattering
 - \(~1\%\) of the diffractive cone – negligible
 - Only forward scattering contributes

Scattering of Coherent Superpositions

- Cold clock atom is in a coherent superposition of states 1 & 2.
- Each state scatters off a background gas atom.
 \[
 |\Psi\rangle = \frac{|1\rangle + |2\rangle}{\sqrt{2}} e^{ikz} \Rightarrow \frac{1}{\sqrt{2}} \left[e^{ikz} + \frac{\hbar}{r} f_1(\theta) \right]|1\rangle + \frac{1}{\sqrt{2}} \left[e^{ikz} + \frac{\hbar}{r} f_2(\theta) \right]|2\rangle
 \]
- 2nd \(\pi/2\) pulse yields a Ramsey fringe.
- Probability current of state 2 has 3 terms: unscattered, interference, scattered.
 \[
 j = \frac{\hbar}{\mu} \text{Im} (\langle 2 | \nabla \langle 2 | \Psi \rangle) = \frac{\hbar k}{\mu} \cos^2 \left(\frac{\phi}{2}\right) + j_{2,\text{int}}(\theta = 0) + j_{2,\text{sc}}(\theta)
 \]
 \[
 j_{2,\text{int}} = \frac{\pi n\hbar}{\mu} \left\{ \text{Re} \left[f_1(0) - f_2(0) \right] \sin(\phi) - 2 \text{Im} \left[f_1(0) + f_2(0) \right] \cos^2 \left(\frac{\phi}{2}\right) \right\}
 \]

\(\theta=0\) dominates for ultracold atoms. with
\[
 f_1(\theta) = \sum_{\ell=0,\infty} \left(2\ell + 1\right) \sin(\delta_1) P_{2\ell}(\cos(\theta)) e^{i\delta_1} \sin(\phi) - 4 \left[\sin^2(\delta_1) + \sin^2(\delta_2) \right] \cos^2 \left(\frac{\phi}{2}\right)
\]

\[
 j_{2,\text{int}} = \frac{\pi n\hbar}{2\mu k} \left\{ \sum_{\ell} \left(2\ell + 1\right) \left[\sin(2\delta_{1\ell}) - \sin(2\delta_{2\ell}) \right] \sin(\phi) - 4 \left[\sin^2(\delta_{1\ell}) + \sin^2(\delta_{2\ell}) \right] \cos^2 \left(\frac{\phi}{2}\right) \right\}
\]

KG, PRL '13
Ultracold vs. Room-temperature Clocks

\[j_{2,\text{int}} = \frac{n\hbar}{2\mu k} \sum_{l} (2l + 1) \left[\sin(2\delta_{1,l}) - \sin(2\delta_{2,l}) \right] \sin(\phi) \\
-4 \left[\sin^2(\delta_{1,l}) + \sin^2(\delta_{2,l}) \right] \cos^2 \left(\frac{\phi}{2} \right) \]

- Large cross section for weak, long-range collisions
- Both clock states have nearly the same C_6 (in 2 slides).

\[\delta_{2,l} = \delta_{1,l} + \Delta \delta \]
\[\sin(2\delta_{1,l}) - \sin(2\delta_{2,l}) \approx -2\Delta \delta \cos(2\delta_{2,l}) \]

- Only weak, long-range background gas collisions shift the frequency of cold clock atoms. Averages to 0 for \(\delta_{2l} \approx 1 \).

For room-temperature clocks, \(j_{\text{sc}} + j_{\text{int}} \) give:

\[j_{2,\text{hot}} = \frac{n\hbar}{2\mu k} \sum_{l} (2l + 1) \left[\sin(2\delta_{1,l} - 2\delta_{2,l}) \sin(\phi) - 2\sin^2(\delta_{1,l} - \delta_{2,l}) \cos(\phi) \right] \]

Non-zero for \(\delta_{2l} \approx 1 \). Short and long-range collisions give a shift.

KG, PRL '13

Long-Range Van der Waals Collisions

\[j_{2,\text{int}} = \frac{n\hbar}{2\mu k} \sum_{l} (2l + 1) \left[\sin(2\delta_{1,l}) - \sin(2\delta_{2,l}) \right] \sin(\phi) \\
-4 \left[\sin^2(\delta_{1,l}) + \sin^2(\delta_{2,l}) \right] \cos^2 \left(\frac{\phi}{2} \right) \]

- Small phase shifts are asymptotically: \(\delta_{l} = \frac{3\pi\mu C_{6} k^{4}}{16\hbar^{2} l^{5}} \)
- Analytic sum and thermal average:

\[\langle j_{2,\text{int}} \rangle \approx -0.62n \left(\frac{2\mu k_{B} T}{m_{p}^{2}} \right)^{\frac{\gamma_{0}}{2}} \left[\frac{C_{6}^{\frac{3}{2}}}{\hbar^{\frac{3}{2}}} \left[\frac{\Delta C_{6}}{C_{6}} \sin(\phi) + 13.8\cos^2 \left(\frac{\phi}{2} \right) \right] \right] \]

- Very general, provided van der Waals phase shift is large.
 - Close for Cs-He and Cs-H_2.

1. Analytic frequency shift cross section: \(\langle j_{\text{shift}} \rangle \approx -0.62n \left(\frac{2\mu k_{B} T}{\hbar^{\frac{3}{2}} m_{p}^{2}} \right)^{\frac{\gamma_{0}}{2}} \left[\frac{\Delta C_{6}}{C_{6}} \sin(\phi) \right] \)

Loss of fringe amplitude \(\Delta A \) scales in the same way.

- Evaluate uncertainty by measuring \(\Delta A \).
- Essentially independent of background gas.

\[\frac{\Delta \nu}{\nu} \approx 2 \times 10^{-16} \Delta A \]

KG, PRL '13
In microwave clocks, both clock states have nearly identical C_6’s.
- 10% accuracy of ΔC_6 is useful

$$C_6 = \frac{3}{2} \sum_{i,j} \frac{f_i f_{p,j}}{\Delta E_i \Delta E_{p,j} (\Delta E_i + \Delta E_{p,j})}$$

for Cs colliding with a perturber p.

- Oscillator strengths f_i sum to 1 for both clock states.
- Smallest energies are the resonance energies ΔE_r and $\Delta E_{p,r}$.
 - Hyperfine splitting $h \nu$ is 10^{-4} of ΔE_1.
- Cs has a lower resonance energy than common background gases (more polarizable).

$\Delta C_6/C_6$ ranges from $1/25,000$ (Cs) to $1/34,000$ (H$_2$).

Summary
- Unambiguously observe s-wave scattering phase shifts.
- Measured phase shifts are independent of the atomic density to 0th order.
 - Atomic-clock-like accuracy.
- Observe scattering phase shift through Feshbach resonances.
- Time variation of a Feshbach resonance.
 - Statistical uncertainty already allows 100 μrad precision.
 - Clock accuracy, sub-nG magnetic field
 - Need better understanding of Cs interactions.
- Background gas collision shift of cold atoms is due to van der Waal interactions.
 - $\Delta C_6/C_6$ is not suppressed in lattice clocks – 1nTorr gives $\approx 2.4 \times 10^{-18}$ ($\tau=6s$)

KG, PRL ’13