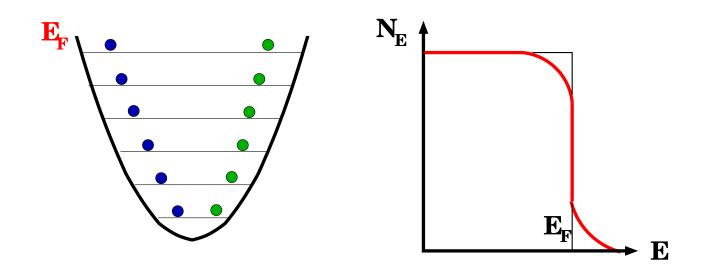
Strongly interacting quantum gases


Gora Shlyapnikov LPTMS, Orsay, France University of Amsterdam

Outline

- Prehistory and Introduction.
- Two-component Fermi gases. Strongly interacting regime
- Molecular BEC regime. Remarkable collisional stability
- Strongly interacting Bose gases
- Stability problem

Hannover, May 8, 2014

Two-component trapped Fermi gas

$$E_F = \frac{\hbar^2 k_F^2}{2m}; \quad k_F = (3\pi^2 n)^{1/3}; \quad E_F \sim N^{1/3}\hbar\omega$$

Weakly interacting gas $n|a|^3\ll 1;\,\,k_F|a|\ll 1$

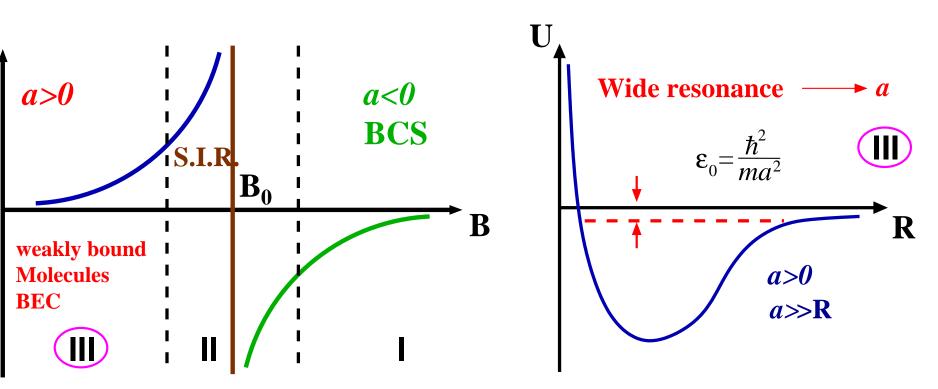
 $a < 0 \rightarrow$ Interspecies attraction \rightarrow Cooper pairing at low T

$$\vec{k}$$
 • $-\vec{k}$

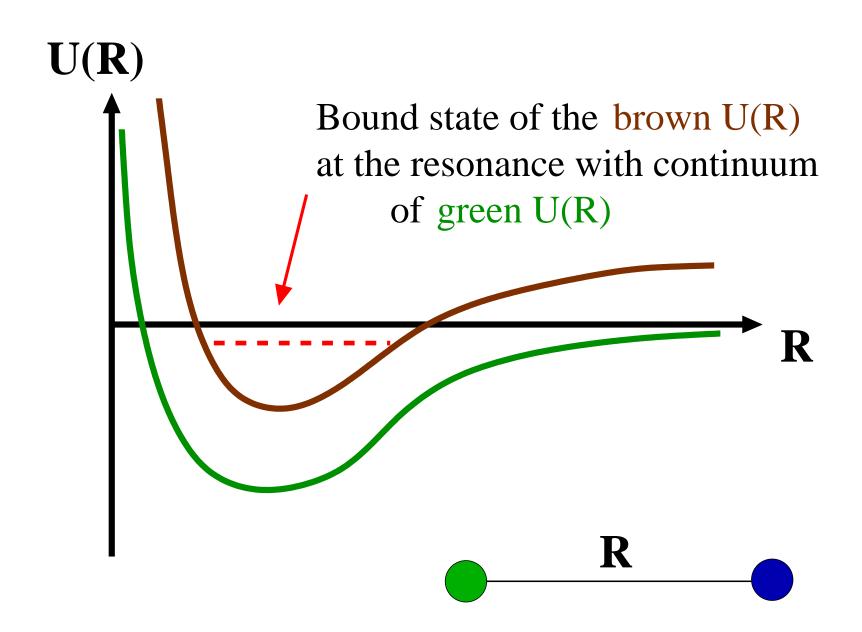
Superfluid BCS transition $o T_c\! \sim\! E_F \exp\{\!-\!\pi/2k_F|a|\}$

 $T_c \ll 0.1 E_F$ for ordinary a Very hard to reach

Two-component Fermi gases. Experiments


 40 K 6 Li

Dilute limit $nR_e^3 \ll 1$ Ultracold limit $\Lambda_T \gg R_e$


Quantum degeneracy \rightarrow JILA 1998 40 K

At present $n \sim 10^{13} - 10^{14} {\rm cm}^{-3}$; $T \sim 1 \mu {\rm K}$

Superfluid behavior through vortex formation → MIT BEC of bosonic molecules → presently in about 10 labs

Feshbach resonance

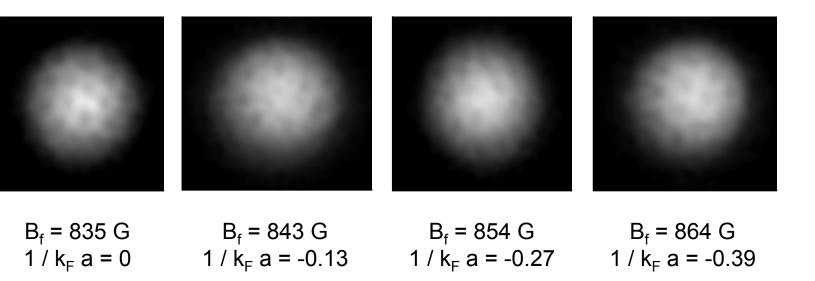
Strongly interacting regime

$$T=0$$
 $k_F|a|\gg 1$ \to Only one distance scale $n^{-1/3}$

Only one energy scale
$$E_F \sim \hbar^2 n^{2/3}/m$$

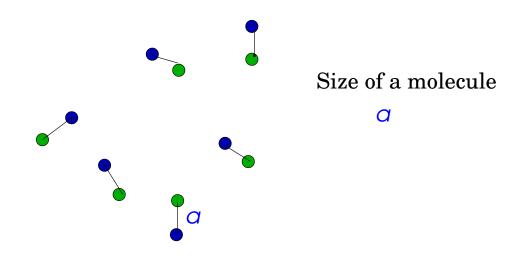
Monte Carlo studies
$$ightarrow ~~\mu pprox 0.4 E_F$$

(Carlson et al, Giorgini/Astracharchik, etc.)

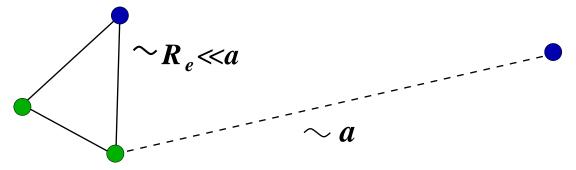

$$T_c = 0.15 E_F$$
 UMASS-ETH

Theory ightarrow Nature of superfluid pairing, Transition temperature, Excitations

Experiments (JILA, MIT,Innsbruck, Duke,ENS, elsewhere)
Vortices (MIT)


Vortex lattices

MIT, Zwierlein et al., Science 05


Direct proof of superfluidity!

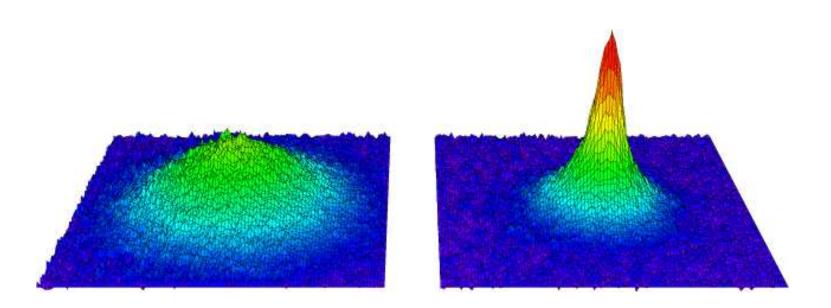
Positive side of the resonance (a > 0). Gas of bosonic dimers

 $na^3 \ll 1 \implies$ weakly interacting Bose gas

mers \rightarrow The highest rovibrational state \Rightarrow Remarkable collisional satability

$$\alpha_{rel} \sim (k_{eff} R_e)^{2?} \sim (R_e/a)^{2?} \Rightarrow C(\hbar R_e/m)(R_e/a)^s; \quad s = 2.55$$

$$\tau \sim (\alpha_{rel} n)^{-1} \sim \text{seconds}$$
 Petrov et al 2003)


Bose-Einstein condensates of molecules

Suppressed relaxation $\,\,\,\,$ Fast elastic collisions $a_{dd}=0.6a$

Efficient evaporative cooling → BEC

The largest diatomic molecules in the world, with the size up to $\sim 3000 \mbox{\normalfont\AA}$

BEC ⇒ JILA, Innsbruck, MIT, ENS, Rice, Duke

Strongly interacting Bose gas

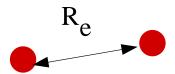
Subtle question ⇒ What about BEC at strong interactions?

Experiments (recent several years)

ENS (Salomon group). Stability at a finite $T \gtrsim 1 \mu \text{K}$ at different a (7Li)

JILA (cornell group). Equilibration at low T with a short lifetime (85 Rb)

Stability problem


Initarity limit $(a \to \infty)$. 3-body recombination

$$A + A + A \Rightarrow A_2 + A + \Delta E$$

Thompson model at T=0 and $a\to\infty$

Two-component Fermi gas. Recombination to deeply bound states

$$\frac{1}{\tau_{rec}} \sim n\sigma v * (nR_e^3) \times (kR_e)^2$$

$$v \sim \frac{\hbar}{mR_e}; \ \sigma \sim \frac{1}{k^2}; \ k \sim n^{-1/3}$$

$$\frac{1}{\tau_{\rm max}} \sim \frac{\hbar R_e^4}{m} \times n^2 \sim (10-100) \ {\rm s \ at} \ n \sim 10^{13} \ {\rm cm}^{-3}$$

Stability problem

Bose gas. Recombination to deeply bound states at T=0 and $a\to\infty$

$$\frac{1}{\tau_{rec}} \sim n\sigma v * (nR_e^3)$$

$$v \sim \frac{\hbar}{mR_e}; \ \sigma \sim \frac{1}{k^2}; \ k \sim n^{-1/3}$$

$$\frac{1}{\tau} \sim \frac{\hbar R_e^2}{m} \times n^{8/3}$$

Faster by a factor of $\sim 1/(n^{2/3}R_e^2)$ ($\sim 10^5$ at $n\sim 10^{13}~{\rm cm}^{-3}$)

Stability problem

Large a > 0. Weakly bound dimers. Relaxation to deeply bound states

Two-component Fermi gas

$$\frac{1}{\tau_{rel}} \sim \frac{\hbar R_e}{m} \left(\frac{R_e}{a}\right)^{2.5} \times n$$

Bose gas

$$\frac{1}{\tau_{rel}} \sim \frac{\hbar a}{m} \times n$$

Faster by a factor of $(a/R_e)^{3.4}$ ($\sim 10^4$)

Equilibration problem

JILA experiment. Close to unitarity

3-body recombination to a weakly bound state. Very low T

$$\frac{1}{\tau_{rec}} \sim \frac{\hbar a^4}{m} \times n^2 \Rightarrow \frac{\hbar}{m} \times n^{2/3}$$

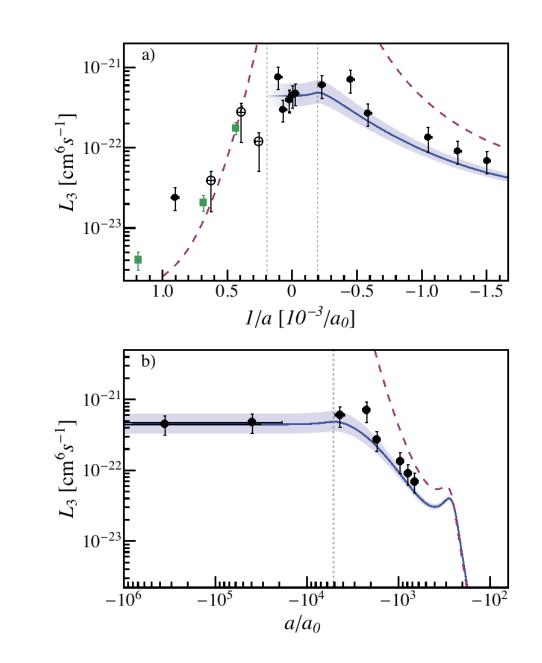
Equilibration rate

$$na^2v o rac{\hbar}{m} imes n^{2/3}$$

Equilibration can be faster

Stability of a strongly interacting Bose gas at a finite T

ENS experiment. 3-body recombination at a finite $T>1\mu {\rm K}$


Recombination to a weakly bound state
$$a>0 \Rightarrow \frac{1}{\tau_{rec}} \sim \frac{\hbar a^4}{m} \times n^2$$

Finite T. When Λ_T becomes comparable with a one replaces a with Λ_T

$$\frac{1}{\tau_{rec}} \sim \frac{\hbar \Lambda_T^4}{\times} n^2 \sim \frac{n^2}{T^2}$$

Established in the ENS experiment

Stability of a strongly interacting Bose gas at a finite ${\cal T}$

