Properties of Fermionic and Bosonic Optical Lattice Clocks

A Scheme for a Bosonic Magnesium Optical Clock
• Optical clocks with Fermions and Bosons
 – Properties, clock transition, excitation
• Systematics
 – Magnetic fields, clock laser, lattice, collisions
• Bosonic Magnesium Optical Lattice Clock
 – Current setup and possible future scheme
• Conclusion
Optical Clocks

• Spectroscopy of narrow transition
 – Alkaline-Earth (like): Mg, Sr, Yb, Hg,…
 – Intercombination line $^1S_0 \rightarrow ^3P_0$
 • Completely forbidden for Bosons
 • Weakly allowed for Fermions

• Spectroscopy in optical lattice
 – Vanishing first order Doppler- and recoil-shift (Lamb-Dicke)
 – Lattice must be operated at magic wavelength
Properties

Bosons

Nuclear spin $I = 0$
- No magnetic substates
 - Only second-order Zeeman
- External bias field necessary to allow the clock-transition
 - Linewidth tuning
- Insensitive to lattice polarization

Fermions

Nuclear spin $I = n/2$
- Magnetic substates
 - First- and second-order Zeeman
 - Line-pulling
- Hyperfinemixing of 3P_1 into 3P_0
 - μHz-mHz linewidth
- Sensitive to lattice polarization
 - Vector- and tensor-shift
 - Polarization gradients in 3D-lattice configuration

s-Wave Scattering
- Precise density control necessary
- \rightarrow Single-site occupation

Scattering suppressed
- No s-wave, only higher order

Magnetic Sensitivity

Magnetic field induced spectroscopy

Mixing field: In the order of 10 G
- Second-order Zeeman: ~ 10 - 100 Hz
 - For 10^{-17}: B-Field stability of 10^{-4} – 10^{-5}
Field calibration $^1S_0 \rightarrow ^3P_1$
- But 3P_1 sensitive to lattice polarization!

Weak bias field to decouple m_F states

Bias field: ~100 mG
- First-order Zeeman: ~ 10 - 100 Hz
 - Interleaved measurements of $\pm m_F$ and averaging mostly gets rid of shift
- Second-order Zeeman: ~ 10-100 mHz
 - Characterized by interleaved measurements and taking difference

Spectroscopy Induced Shifts

Bosons

Magnetic field induced spectroscopy

High laser intensities necessary: mW/cm² – W/cm²
- Considerable high light-shifts ~ 1-10 Hz
 - For 10^{-17}: Intensity stabilization: 10^{-3}-10^{-4}

Fermions

Line-pulling

Low laser intensities: µW/cm²
- Low light-shifts < mHz

Residual population → asymmetric background
- State preparation crucial

Probelaser polarization
- Coupling to neighbouring m_f states
- Birefringence (viewports), alignment to bias field

Lattice Induced Shifts

Bosons

Besides tunneling (see my talk from the last workshop)...

Hyperpolarizability

Higher-order dependence on lattice-depth U_0

e.g. 2 photon resonances [1]

- Can be evaluated. No serious barrier for 10^{-17} or below.

Magnetic Dipole (M1), Electric Quadrupole (E2)

E1 lattice potential: $U_{E1} = -E_1(\lambda, I) \cos^2(kz)$

Additional M1/E2 term $U_{M1/E2} = [M_1(\lambda, I) + E_2(\lambda, I)] \sin^2(kz)$

Scaling: \sqrt{I}, fractional shift: $< 10^{-17}$ [2,3]

Fermions only:

Vector and tensor shift (nuclear spin, sensitive to lattice polarization)

$$\Delta n^{E1} = (\Delta \kappa' \xi + \Delta \kappa'' m_F \xi e_k \cdot e_B + \Delta \kappa' \beta) U_0$$

with $\beta = (3|\vec{e} \cdot \vec{e}_B|)^2 - 1)[3m_F^2 - F(F+1)]$

Systematic evaluation with interleaved m_F (like Zeeman): $<10^{-17}$

Linear lattice polarization + orthogonal bias field minimize vector-shift

14.03.2014

Klaus Zipfel

Collisional Shifts

Bosons

Background gas collisions (Fermions & Bosons)
Besides scattering losses: Phase-shift of states [1]
• Density estimation (H,H₂,He,Xe,...) over trapping lifetime
• Then: Shift estimation over C_6 coefficients [1] $< 10^{-17}$

Bunching $< n(e) > = \frac{1}{e^{\beta(E-)}-1}$

s-wave scattering even at $T = 0$
• Solution: single-site occupation (e.g. 3D lattice)

Fermions

Anti-Bunching $< n(e) > = \frac{1}{e^{\beta(E-)}+1}$

s-wave supressed (for indistinguishable fermions)
• Spin-polarization of atomic sample
• Purification of initial state
 – Minimize inhomogenities for excitation

Conclusion

Magnetic fields

- **Bosons:** High for allowing clock-transition
 - Second-order Zeeman shift high
- **Fermions:** Moderate for lifting degeneracy of m_F's
 - Interleaved m_F measurement
 - First-order Zeeman averages out
 - Second-order Zeeman by taking difference
 - 2x higher Dick-Effect

Spectroscopy induced shifts

- **Bosons:** High AC-Stark for allowing clock-transition
- **Fermions:** Low AC-Stark
 - Line-pulling due to m_Fs

Lattice induced shifts

- **Bosons:** Only hyperpolarizability and M1/E2
- **Fermions:** Additional vector and tensor shifts (polarization)

Collisions

- **Bosons:** s-wave scattering dominant \rightarrow single-site occupation
- **Fermions:** s-wave effectively suppressed

Reduction of spectroscopic shifts:

- Interferometric schemes e.g. Hyper-Ramsey
 - Precise Ramsey-pulse synthesis allows significant reduction of sensitivity to spectroscopy AC-Stark
 - Turning of magnetic fields during free evolution time reduces magnetic field sensitivity

Generalized Ramsey scheme with non-linear sensitivity to shifts during pulses

Pulse conditions:
1) \(\Omega_0(\tau_1 + \tau_2) = 2\pi n \)
2) \(\Omega_0\tau_1 = \pi(2m + 1)/2 \)
\(\Rightarrow \frac{\tau_2}{\tau_1} = \frac{(4n - 2m - 1)}{(2m + 1)} \)

E.g. \(\tau_1 = \pi/2 \), \(\tau_2 = \pi 3/2 \)

Effective shift \(\Delta = \Delta_{sh} - \Delta_{\text{step}} \)

Properties:
- Shifts during pulse separation time \(T \) are absent (no clock-Laser) or can be turned off (magnetic fields).
 \(\Rightarrow \) Free evolution of atomic phase
- Nonlinear behaviour of effective shifts during pulses
 \(\Rightarrow \) Moderate control of spectroscopy fields

Example: Bosonic \(^{174}\text{Yb} \), \(T=40\text{ms} \), \(\tau_1 = 10 \text{ ms} \) \((\Omega/2\pi =25 \text{ Hz}) \) \(\Rightarrow 20 \text{ G} \text{ B-Field and AC-Stark of 70 Hz.} \)
 Control of AC-Stark to 0.7 Hz (percent level) results in shift of 0.35 mHz \((10^{-18}) \)

But: If \(\Omega_0(\tau_1 + \tau_2) \) criteria not ideally matched: Again sensitive to shifts

Solution: \(\pi \) phase-shift during second Ramsey-Pulse.

A Scheme for a Bosonic Magnesium Optical Clock
Atomic properties:
• Low sensitivity to black-body-radiation
 \(-3.9 \times 10^{-16}\)
• No known two-photon resonances near \(\lambda_{\text{Magic}}\)
 \(\rightarrow\) No Hyperpolarizability expected
• High MOT-temperatures
 – 3 mK S-MOT
 – 1 mK T-MOT
• Intercombination line does not allow for magneto-optical trapping

Current implementation
• Loading of the lattice
 – Density distribution in the lattice
• Spectroscopy

Future additions
• Hyper-Ramsey?
• Normalization scheme

on the next few slides
Direct loading of a lattice from a MOT not efficient

- mK Temperatures
- Density limited MOT
→ Only a small fraction can be transferred

Solution: Continuous loading of an optical trap from mK hot atoms [1]

- 3P_0 as dark state
- Continuous flux of mK-hot 3P_0 atoms
- Coldest can be accumulated in optical dipole trap
→ 10^5 atoms at 100 µK

But:

- Not working for magic-Wavelength lattice
 - Ionization
- Adaptation to Fermion (I=5/2) → many more lasers

Transfer of atoms to the lattice:
- Loading of a dipole trap at 1064 nm
 10^5 atoms at 100 µK
- Transfer to optical lattice
 Up to 10^4 atoms at 10 µK
 Lamb-Dicke: 0.35
 Well-depth 55 µK (15 Er)

Density distribution in the lattice:
Atoms distributed over Rayleigh-range in 1064 nm dipole trap
\[w_{0,1064} = 70 \mu \text{m} \Rightarrow b = 2z_0 = \frac{2\pi w_0^2}{\lambda} = 2.9 \text{ cm} \]
Magic Wavelength Lattice: \(\lambda_{\text{magic}} \approx 468.44 \)
\(\Rightarrow \) Lattice sites \(\frac{2.9 \text{ cm}}{468.44 \text{ nm}/2} \approx 124000 \)
With 10^4 atoms: 1 atom every 12 lattice sites
\(\Rightarrow \) Collisions suppressed

Preparation of 1S_0 atoms in lowest lattice band:
- Ramping down the lattice to $4\ E_r\ (\sim 14\ \mu K)$
- Remaining atoms at $T = 1.3\ \mu K$

Magnetic field induced spectroscopy:
Currently: $B = 100\ G$, $I = 7\ W/cm^2$
$\rightarrow\Omega = 2\pi \times 185\ Hz$
Detection with T-MOT (Background free)

Huge shifts:
- Clock-Laser: -3.5 Hz
- Quadratic-Zeeman: -21.7 kHz

Only for max. broadening for the search of the “magic wavelength”

<table>
<thead>
<tr>
<th>Element</th>
<th>γ [kHz]</th>
<th>Δ_{22} [THz]</th>
<th>α [Hz/($T\sqrt{mW/cm^2}$)]</th>
<th>β [MHz/T2]</th>
<th>κ [mHz/(mW/cm2)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yb</td>
<td>182</td>
<td>21</td>
<td>186</td>
<td>-6.2</td>
<td>15</td>
</tr>
<tr>
<td>Sr</td>
<td>7</td>
<td>5.6</td>
<td>198</td>
<td>-23.3</td>
<td>-18</td>
</tr>
<tr>
<td>Ca</td>
<td>0.4</td>
<td>1.5</td>
<td>154</td>
<td>83.5</td>
<td>-2.5</td>
</tr>
<tr>
<td>Mg</td>
<td>0.07</td>
<td>0.6</td>
<td>98</td>
<td>-217</td>
<td>-0.5</td>
</tr>
</tbody>
</table>

14.03.2014

Klaus Zipfel
Analyzing frequency-shift at different Trap-Depths and Lattice-Frequencies

\[\lambda_{\text{magic}} \approx 468.44 \pm 0.27 \]
Magnetic field induced spectroscopy:

Rabi-Spectroscopy:
Low Rabi-Frequencies \rightarrow Long pulses (Fourier-Limit)
$B = 1 \text{ G}, I = 1 \text{ W/cm}^2$
$\rightarrow \Omega = 2\pi \times 0.3 \text{ Hz}$

Moderate shifts:
- Clock-Laser: -0.5 Hz
- Quadratic-Zeeman: -2.17 Hz

To reach 10^{-17}:
B-Field stability: 1.5×10^{-3}
Clock-Laser intensity stability: 1.2×10^{-2}

Hyper-Ramsey:
High Rabi-Frequencies \rightarrow Shorter pulses
$B = 10 \text{ G}, I = 7 \text{ W/cm}^2$
$\rightarrow \Omega = 2\pi \times 8.2 \text{ Hz}$

High shifts:
- Clock-Laser: -3.5 Hz
- Quadratic-Zeeman: -217 Hz

B-Field stability: 1.5×10^{-5}
Clock-Laser intensity stability: 1.8×10^{-3}

<table>
<thead>
<tr>
<th>Yb</th>
<th>182</th>
<th>2</th>
<th>186</th>
<th>-6.2</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sr</td>
<td>7</td>
<td>5.6</td>
<td>198</td>
<td>-23.3</td>
<td>-18</td>
</tr>
<tr>
<td>Ca</td>
<td>0.4</td>
<td>1.5</td>
<td>154</td>
<td>61.5</td>
<td>-217</td>
</tr>
<tr>
<td>Mg</td>
<td>0.07</td>
<td>0.6</td>
<td>98</td>
<td>-217</td>
<td>-0.5</td>
</tr>
</tbody>
</table>

Reduction of Tunneling

Tunneling in lattice: (my last RTG talk, 2013)
- Line broadening and/or shift
- Reduces clock performance

Solution: Accelerated lattice ($\Delta E >$ Lattice band-width)
- Vertical lattice: $\Delta E = 138$ Hz
- With current setup: Tilting (up to 5°)
 $\Rightarrow \Delta E = 12$ Hz possible

Currently:
- Lattice depth: 15 Er (~ 55 µK)
 \Rightarrow Lattice band-width: few 100 Hz – 1 kHz
- MOPA to replace TiSa
- More efficient SHG crystal
- New Cavity-Mirrors for Lattice
Detection in Triplet-MOT:
• Background free
• Can’t be done while the lattice is turned on
 → Ionization by lattice photons

Solution: Transfer atoms to 1064 nm dipole trap after spectroscopy
• Detection of 3P_0 atoms in T-MOT
• Transfer of 1S_0 atoms to 3P_1 and second T-MOT phase

First proof-of-principal test have shown a nearly 100% transfer efficiency from the lattice back to the dipole trap for both states
Fermions are more favorable than Bosons for optical clocks

- Suppressed s-wave collisions
- Clock-Laser AC-Stark small due to low required intensities
- Zeeman-Effect can be characterized with interleaved m_F measurements
 - Two times longer measurement reduces stability (Dick-Effect)

but

- Sensitive to lattice polarization (Tensor- & Vector-shift)
 - Can also be characterized with interleaved m_F measurements

Hyper-Ramsey method promising to reduce shift due to probe-pulses
- Less Clock-Laser AC-Stark sensitivity. No B-Fields during free evolution time

Bosonic Magnesium Clock

- Density controlled: 1 atom every 12 lattice sites
- Future implementation of spectroscopy: Hyper-Ramsey scheme?
- Tunneling
- Normalization + Background free detection in T-MOT
Thank you